On the paternal heritage of the Bantu expansion in Southeast Africa

Here we report the results of fine resolution Y chromosomal analyses (Y-SNP and Y-STR) of 267 Bantu-speaking males from three populations located in the southeast region of Africa. In an effort to determine the relative Y chromosomal affinities of these three genotyped populations, the findings are interpreted in the context of 74 geographically and ethnically targeted African reference populations representing four major ethno-linguistic groups (Afro-Asiatic, Niger Kordofanin, Khoisan and Pygmoid).

The Italian genome reflects the history of Europe and the Mediterranean basin

Recent scientific literature has highlighted the relevance of population genetic studies both for disease association mapping in admixed populations and for understanding the history of human migrations. Deeper insight into the history of the Italian population is critical for understanding the peopling of Europe.

Reconstructing ancient mitochondrial DNA links between Africa and Europe

To further evaluate this issue, we analyzed 69 mitochondrial genomes belonging to various L sublineages from a wide range of European populations. Phylogeographic analyses showed that ∼65% of the European L lineages most likely arrived in rather recent historical times, including the Romanization period, the Arab conquest of the Iberian Peninsula and Sicily, and during the period of the Atlantic slave trade. However, the remaining 35% of L mtDNAs form European-specific subclades, revealing that there was gene flow from sub-Saharan Africa toward Europe as early as 11,000 yr ago.

Genetic structure of native circumpolar populations based on autosomal, mitochondrial, and Y chromosome DNA markers

This study investigates the genetic structure of the present-day inhabitants of Beringia in order to answer questions concerning their origins and evolution. According to recent studies, the ancestors of Native Americans paused for a time in Beringia, during which they differentiated genetically from other Asians before peopling the New World. Furthermore, the Koryaks of Kamchatka share a “ubiquitous” allele (D9S1120) with Native Americans, indicating they may have descended from the same ancestral Beringian population that gave rise to the New World founders.