Universal heteroplasmy of human mitochondrial DNA

Universal heteroplasmy of human mitochondrial DNA


Mammalian cells contain thousands of copies of mitochondrial DNA (mtDNA). At birth, these are thought to be identical in most humans. Here, we use long read length ultra-deep resequencing-by-synthesis to interrogate regions of the mtDNA genome from related and unrelated individuals at unprecedented resolution. We show that very low-level heteroplasmic variance is present in all tested healthy individuals, and is likely to be due to both inherited and somatic single base substitutions. Using this approach, we demonstrate an increase in mtDNA mutations in the skeletal muscle of patients with a proofreading-deficient mtDNA polymerase ? due to POLG mutations. In contrast, we show that OPA1 mutations, which indirectly affect mtDNA maintenance, do not increase point mutation load. The demonstration of universal mtDNA heteroplasmy has fundamental implications for our understanding of mtDNA inheritance and evolution. Ostensibly de novo somatic mtDNA mutations, seen in mtDNA maintenance disorders and neurodegenerative disease and aging, will partly be due to the clonal expansion of low-level inherited variants.


  • Payne, Brendan A. I.; Wilson, Ian J.; Yu-Wai-Man, Patrick; Coxhead, Jonathan; Deehan, David; Horvath, Rita; Taylor, Robert W.; Samuels, David C.; Santibanez-Koref, Mauro & Chinnery, Patrick F. (2013). Universal heteroplasmy of human mitochondrial DNA. Human Molecular Genetics, 22(2), 384-390.

Source Link:


Peoples: - | Places: - | Topics: - | DNA Type: mtDNA

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

you're currently offline