Home/Journals/Molecular Genetics and Genomics

Molecular Genetics and Genomics

Impact Factor:
Years in Print:
Journal Website:

Articles of Interest

A study of the Bodrogköz population in north-eastern Hungary by Y chromosomal haplotypes and haplogroups

Journal: Molecular Genetics and Genomics | Year: 2017


We have determined the distribution of Y chromosomal haplotypes and haplogroups in population samples from one of the most important areas in north-eastern Hungary from many villages in the Bodrogköz. The Bodrogköz region was chosen due to its isolated nature, because this area was a moorland encircled by the Tisza, Bodrog, and Latorca Rivers and inhabitants of this part of Hungary escaped from both Tatar and Ottoman invasions, which decimated the post-Hungarian Conquest populations in many parts of the country. Furthermore, in the first half of the tenth century, this region served as the Palatial Centre and burial grounds of the Hungarian tribes. It has thus been assumed that the present population in this area is likely to be more similar to the population that lived in the Conquest period. We analysed male-specific markers, 23 Y-STRs and more than 30 Y-SNPs, that reflect the past and recent genetic history. We found that the general haplogroup distribution of the samples showed high genetic similarity to non-Bodrogköz Hungarians and neighbouring populations, despite its sheltered location and historical record. We were able to classify the Y-chromosomal haplogroups into four large groups based on STR mutation events: pre-Roman/Roman ancient lineage, Finno-Ugric speakers arriving into the Carpathian Basin, Migration period admixture, and post-Hungarian Conquest admixture. It is clear that a significantly larger database with deep haplogroup resolution, including ancient DNA data, is required to strengthen this research.

Peoples: Finno-Ugric speakers and Hungarians | Places: Bodrogköz region and Carpathian Basin | Topics: | DNA Type: Y-DNA

Genetic structure of the early Hungarian conquerors inferred from mtDNA haplotypes and Y-chromosome haplogroups in a small cemetery

Journal: Molecular Genetics and Genomics | Year: 2016


We applied ancient DNA methods to shed light on the origin of ancient Hungarians and their relation to modern populations. Hungarians moved into the Carpathian Basin from the Eurasian Pontic steppes in the year 895 AD as a confederation of seven tribes, but their further origin remains obscure. Here, we present 17 mtDNA haplotypes and four Y-chromosome haplogroups, which portray the genetic composition of an entire small cemetery of the first generation Hungarians. Using novel algorithms to compare these mitochondrial DNA haplogroups with other ancient and modern Eurasian data, we revealed that a significant portion of the Hungarians probably originated from a long ago consolidated gene pool in Central Asia-South Siberia, which still persists in modern Hungarians. Another genetic layer of the early Hungarians was obtained during their westward migrations by admixing with various populations of European origin, and an important component of these was derived from the Caucasus region. Most of the modern populations, which are genetically closest relatives of ancient Hungarians, today speak non-Indo-European languages. Our results contribute to our understanding of the peopling of Europe by providing ancient DNA data from a still genetically poorly studied period of medieval human migrations.

Peoples: Hungarians | Places: Hungary | Topics: | DNA Type: mtDNA and X-DNA

A comparative phylogenetic study of genetics and folk music

Journal: Molecular Genetics and Genomics | Year: 2012


Computer-aided comparison of folk music from different nations is one of the newest research areas. We were intrigued to have identified some important similarities between phylogenetic studies and modern folk music. First of all, both of them use similar concepts and representation tools such as multidimensional scaling for modelling relationship between populations. This gave us the idea to investigate whether these connections are merely accidental or if they mirror population migrations from the past. We raised the question; does the complex structure of musical connections display a clear picture and can this system be interpreted by the genetic analysis? This study is the first to systematically investigate the incidental genetic background of the folk music context between different populations. Paternal (42 populations) and maternal lineages (56 populations) were compared based on Fst genetic distances of the Y chromosomal and mtDNA haplogroup frequencies. To test this hypothesis, the corresponding musical cultures were also compared using an automatic overlap analysis of parallel melody styles for 31 Eurasian nations. We found that close musical relations of populations indicate close genetic distances (<0.05) with a probability of 82%. It was observed that there is a significant correlation between population genetics and folk music; maternal lineages have a more important role in folk music traditions than paternal lineages. Furthermore, the combination of these disciplines establishing a new interdisciplinary research field of ” music-genetics” can be an efficient tool to get a more comprehensive picture on the complex behaviour of populations in prehistoric time.

Peoples: | Places: Europe | Topics: Folk music | DNA Type: mtDNA and Y-DNA

2005-01-01T00:00:00+00:00 January 1st, 2005|